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Correlation and Prediction of Thermodynamic Data
for Oxide and Silicate Minerals1

G. Grimvall2,3 and D. Oberschmidt2

Often one needs to estimate heat capacities and related properties such as the
entropy for a particular material through interpolation, extrapolation, or com-
parison with data for related materials. A scheme is discussed to perform such
estimates, focusing on the vibrational entropy. At intermediate and high tem-
peratures, the entropy depends only on the logarithmic average over the
phonon frequencies. This average can be factorized, so that the atomic masses
separate from the interatomic force constants. Thus, one can account for the
mass effect in the vibrational entropy and get a remaining quantity which
depends only on the force constants, i.e., on the electronic structure, and shows
a strong regularity when chemically similar materials are compared. In the
framework of these ideas, estimates based on an additivity rule for the entropy
of a complex system in terms of the entropies of the constituents, and also rela-
tions between the vibrational entropy and sound velocities, are discussed. Oxide
and silicate minerals are used as examples.
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1. INTRODUCTION

The major contribution to the thermodynamic functions of solids comes
from the lattice vibrations. The phonon spectra for most elements and
many simple compounds are known from experiments and can often be
calculated theoretically, with phonon frequencies predicted to better than
5-10%. Contrasting with this, the phonon spectra are usually not known
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from experiments for complex solids, such as minerals of geophysical inter-
est. Instead, simple empirical rules and semiempirical modeling based on,
e.g., measured elastic properties, have been used [ 1 ]. We first briefly review
the theoretical background of a systematic approach to the vibrational
spectrum as it is manifested in the entropy. This approach has been applied
by our group to transition metal carbides, nitrides [2, 3], borides [4],
binary semiconductors [5], and binary ionic solids [6-9]. The reader is
referred to these works and Refs. 10-12 for further aspects of the theory.
This paper extends such studies to more complex solids, choosing oxide
and silicate minerals as an illustration.

2. REPRESENTATION OF A PHONON SPECTRUM

Let a phonon spectrum be described by its density of states F(w) , nor-
malized to 3 per atom, where w is a phonon frequency. From F ( w ) we
form frequency moments w(n) defined as
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for n = 0, where kB and h are Boltzmann's and Planck's constants, respec-
tively. When n = 0, we get kBTD(0) = exp( 1/3) hw(0). Hence T D (n ) = TD for
all n in a spectrum with the Debye model form, characterized by TD (i.e.,
wmax = kBTD/h). A real spectrum is not of the Debye form, and the quan-
tities T D ( n ) describing F ( w ) vary with n.

Some important physical quantities depend on only one moment w ( n ) ,
i.e., on only one T D (n) . For example, the low-temperature heat capacity
and entropy correspond to n –> – 3, the high-temperature heat capacity to
n = — 2, and the high-temperature entropy (see below) to n = 0. The elastic
constants uniquely give the low-frequency limit of the phonon frequencies.

when n > — 3 and n = 0. The limiting behavior for n = 0 yields

The same information that is contained in w ( n ) can also be expressed as
"Debye temperatures," T D ( n ) . We define TD(n) such that a Debye spectrum
with cutoff frequency wmax = k B T D ( n ) / h has the corresponding frequency
moment w ( n ) , i.e.,



Therefore, elastic data can also be used to calculate TD(n) for n —> – 3. The
representation of the spectrum F ( w ) by T D ( n ) is motivated by the connec-
tion to the often used Debye model, for example, through the publication
of Debye temperatures. It must be stressed that since our TD(n) for different
n are not equal, we can deal with any form of the phonon density of states
F(w).

3. THE VIBRATIONAL ENTROPY

The vibrational entropy of harmonic lattice vibrations has the high-
temperature expansion
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N is the number of atoms in the solid. This expression depends on all the
3N vibrational frequencies that enter F(w). However, at high T the leading
terms in Eq. (4) are

Hence, S(T) at high T is essentially determined by a single parameter, w(0)
or TD(0).

Let the vibrational entropy in a strict Debye model, with a Debye
temperature Ts, be SD(T; Ts). Further, let the experimentally determined
vibrational entropy of a solid be Sexp( T). The relation

yields a solution T S ( T ) for each T. This is analogous to the more frequently
used procedure to get a Debye temperature T C ( T ) for the heat capacity C
by equating the Debye model expression CD( T; TD) with an experimental
result Cexp( T). From the discussion above, it follows that Ts(T —> 0) =
TD( — 3). Of more importance for our subsequent work is the high-tem-
perature relation T s ( T ) ~ TD(0); cf. Eq. (5).

4. T S ( T ) OF MgAl2O4

As an illustration, we calculate T s ( T ) for MgAl2O4 from the
experimental entropy data recommended in the JANAF tables [13]. The
result is given in Fig. 1. That figure also shows the Debye temperature
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Telast(T) = T D (— 3) calculated from measured elastic constants in the tem-
perature range 300 to 1000 K [ 1 ]. At T=0, TS = Telast. At temperatures up
to appoximately 300 K, T s ( T ) shows a strong temperature dependence.
This reflects the fact that the true phonon spectrum of MgAl2O4 is not of
the strict Debye model shape. T S ( T ) at these temperatures results from a
weighting of the frequencies in F ( w ) which cannot be reduced to a single
w ( n ) . At high temperatures, however, T s ( T ) only depends on w(0). The
decrease in T s ( T ) with temperature in that region is due to anharmonic
effects in the lattice vibrations. One can show that to low order in quan-
tum mechanical perturbation theory the vibrational entropy is correctly
accounted for if the anharmonically shifted phonon frquencies are inserted
in Eq. (4) that is derived for harmonic vibrations. Therefore, T s ( T ) has a
well-defined physical meaning also at high temperatures. This is in contrast
to a Debye temperature T C ( T ) derived from the heat capacity Cexp( T), that
is also shown in Fig. 1. When the actual heat capacity exceeds the Dulong-
Petit limit of 3kB per atom, the equation CD(T; TC) = Cexp( T) has no
physical solution. Not even the heat capacity Cv at constant volume has
the limiting value 3kB/atom at high T. Hence T C ( T ) is not a physically well
defined quantity at high T even if it is fitted to Cv. The temperature
dependence of Telast in Fig. 1 is, of course, also due to anharmonic effects.

Fig. 1. The entropy Debye temperature T S ( T ) of
MgAl2O4 calculated from Eq. (6) and recommended
experimental entropy data [13]. Telast is the conventional
Debye temperature based on sound velocities [1], and
T C ( T ) is the Debye temperature calculated from experi-
mental heat capacities [13].



Here ks (subscript S because it can be derived from entropy data) has the
physical dimension of a force constant, and is a complicated average for all
the interatomic forces in the solid. Mlog is the logarithmic average of the
atomic masses.

The quantity ks, or equivalently the quantity Mlog[TD(0)]2, depends
on the electronic structure of a solid, but not on the atomic masses. The
lattice parameters and the average volume per atom Oa in the solid (total
volume V divided by the number of atoms N) also depends only on the
electronic structure. Hence, any combination k s (O a ) p is independent of the
atomic masses. It can be expected to vary in a regular way when compared
for chemically similar compounds. If p = 2/3, the quantity kS(Oa)

p has the
dimension of energy. We therefore define the entropy-related energy ES =
k S (O a ) 2 / 3 . Es often shows a trend similar to that of other bonding-related
quantities of the same dimension, e.g., the cohesive energy Ecoh or the
quantity kBTm where Tm is the melting temperature [2-4]. For alkali
halides [6], alkali oxides [7], and other simple ionic solids [8], Es is
remarkably constant, even when solids with different crystal structures are
compared.

This scheme was tried by Latimer [10, 14] when A and B are elements.
Holland [15] applied it to minerals, and others, including Blander and
Stover [16], Richet et al. [17], and Navrotsky [18], have followed a
similar path. We shall now discuss the additivity rule within the framework
of lattice dynamics outlined above.
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5. THE ATOMIC-MASS DEPENDENCE OF TD(0)

Phonon frequencies depend on the interatomic forces and on the
atomic masses. In the elastic limit (i.e., small w), all frequencies vary as
p - 1 / 2 , where p is the mass density in the solid. A separation of atomic
masses and interatomic forces occurs also in the averaged frequency w(0).
We may formally write

6. AN ADDITIVITY RULE FOR THE ENTROPY

We now consider the vibrational entropy SAB of a complex solid with
a chemical composition that can be summarized as AB, where A and B are
themselves more or less complex solids. If SA and SB are known, but not
SAB, it may be tempting to estimate SAB from an additivity rule



From Eqs. (5) and (7) we see that the additivity rule [Eq. (8)] gives
a correct account of the atomic masses in the vibrational entropy at high
temperatures. This conclusion is not affected by anharmonic effects. There-
fore (at high T) a violation of Eq. (8) is caused only by electronic-structure
effects. Some of the bonds within the units A and B are almost unchanged
when these units are combined in the solid AB, and do not contribute to
a violation of Eq. (8). To get a simple physical description of deviations
from the additivity rule, we express the difference between an actually
measured SAB and the sum of the measured SA and SB as a relative shift
DTS in the entropy Debye temperature TS for the compound AB. Since
DTS/TS is small, we have, from Eq. (5) and at high temperatures,

where N is the total number of atoms in the solid AB. Table I gives DTS/TS

for some oxide and silicate minerals. Data are from Saxena et al. [19].
SiO2 exists in many forms. For comparison, Table I therefore refers to
quartz A-SiO2, as well as to cristobalite, SiO2(crist.).

The strengths of the interatomic forces tend to increase with decreasing
volume per atom, as has been frequently noted by our group (cf. ES above)
and others; see references in Ref. 1. Holland [15] suggested an empirical
correction to the additivity rule, invoking molar volumes. In Fig. 2 we
therefore correlate DTS/TS with the average volume par atom to see how
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Table I. Relative Shift in Entropy Debye Temperature

Reaction

MgO + Al2O3 —> MgAl2O4( spinel)
MgO + SiO2(a) -> MgSiO3(orthoenstatite)
2MgO + SiO2(A) —> Mg2SiO4(forsterite)
Al2O3 + SiO2(A) —> Al2SiO5(andalusite)
Al2O3 + SiO2(A) —> Al2SiO5(kyanite)
2MgO + 2Al2O3 + 5SiO2(a) —> Mg2Al4Si5O18(corderite)
3MgO + Al2O3 + 3SiO2(A) —> Mg3Al2Si3O12(pyrope)

MgO + SiO2(crist.) —> MgSiO3(orthoenstatite)
2MgO + SiO2(crist.) —> Mg2SiO4(forsterite)
Al2O3 + SiO2(crist.) –> Al2SiO5(andalusite)
Al2O3 + SiO2(crist.) —> Al2SiO5(kyanite)
2MgO + 2Al2O3 + 5SiO2(crist.) —> Mg2 Al4Si5O18(corderite)
3MgO + Al2O3 + 3SiO2(crist.) —> Mg3Al2Si3O12(pyrope)

DTS/TS (%)

-2.6
2.8
0.7
1.3
5.8

-7.3
-2.2

5.5
2.7
3.0
7.5

-4.9
-0.2
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Fig. 2. The violation of the entropy additivity rule, Eq. (8), expressed
as a corresponding relative shift in the entropy Debye temperature,
DTs/TS, plotted versus an analogous difference in the average volume per
atom DV/V, for the systems in Table I. Filled circles refer to calculations
based on A-SiO2, and open circles to SiO2(cristalobalite).

well an additivity rule holds. We define a relative volume shift DV/V=
(VAB- VA- VB)/VAB, with molar volumes V from Saxena et al. [19]. The
filled circles refer to combinations with A-SiO2, and open circles refer to
combinations with cristobalite which has lower TS by 4.5 % and higher V
by 12% than A-SiO2. The dashed line in Fig. 2 is only a guide for the eye.
We conclude from Table I that the additivity rule often predicts the Debye
temperature TS with an error < 5%, which is better than can be expected
even from an ambitious theoretical calculation in the absence of ther-
modynamic data. We also see from Fig. 2 that TS does correlate with
changes in the volume per atom (often related to a change in coordination
numbers for the atoms), but corrections based on such a trend are not very
accurately predicted in these cases. However, invoking such a correction in
our case would predict Ts to better than 3 %.

7. RELATION BETWEEN TD(0) AND SOUND VELOCITIES

The Debye temperature TD( — 3) appearing in the low-temperature
limit of the heat capacity is proportional to an average sound velocity va,
where 3/va

3 = 2/vs
3 + 1/vp

3. The low velocity vs associated with the trans-
verse (shear) mode dominates va. As a conseqence TD( — 3) is strongly
correlated to the shear modulus G but depends weakly on the bulk
modulus B [20]. The logarithmic average w(0) of interest here gives a con-
siderable weight also to longitudinal phonon modes, which are strongly
affected by B. Further, B may be rather easily obtained in an ab initio
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theoretical calculation, while G is more difficult to calculate and has more
uncertainty. Therefore ab initio calculations extended to finite temperatures
have often invoked an empirical relation between B and a Debye tem-
perature that is then used to describe temperature effects [21, 22]. Such a
procedure could be motivated by the empirical fact [23] that TD(0) for
many metals of cubic structure is slightly better correlated to B than to G.
However, there have also been doubts that this scaling of TD(0) is generally
useful. In Fig. 3 we look at such relations for some minerals. The elastic-
limit Debye temperature Telast as tabulated by Anderson [1] is plotted
(filled circles) versus our TS ~ TD(0) derived from the measured entropy at
temperatures T ~ TS/2. This plot essentially shows a correlation of TS to G.
The open circles are based on a Telast with va replaced by a scaled average

Fig. 3. The conventional Debye temperature Telast based on the sound
velocities (filled circles) plotted versus the entropy Debye temperature TS,
and the analogous plot with Telast based only on a rescaled longitudinal
sound velocity (open circles). The dashed line is just a guide for the eye.



longitudinal sound velocity Avp, with vp also taken from Anderson [ 1 ] and
A = 2/3 being an empirical scaling factor that brings many of the Telast based
on va and Avp , respectively, to approximately coincide in Fig. 3. This proce-
dure gives a Telast with a considerable weight of B. We see that an empirical
relation between TD(0) and the average longitudinal sound velocity,
through a Debye-type relation, is as good as a direct correlation of TD(0)
to Telast = TD( – 3). The solid line in Fig. 2 is the relation Telast = TS, i.e., the
correlation if TS were identical to the conventional low-temperature Debye
temperature, Telast. The dashed line is just a guide for the eye, showing that
Telast is often somewhat larger than TS. It is also clear from Fig. 3 that some
solids strongly violate a close correlation between TS and Telast; cf. a discus-
sion by Anderson [1].

8. CONCLUSIONS

We have studied the additivity rule SAB = SA + SB for the vibrational
entropy S of a compound AB, expressed in its components A and B, with
data for oxide and silicate minerals. At high temperatures (T > T S ) , the rule
is equivalent to the prediction of an entropy Debye temperature TS with an
error < 5 %. If we also allow for a correction based on the average volume
per atom, the error in TS is typically < 3%. A major reason for the appli-
cability of the additivity rule is that it correctly accounts for the effect of
atomic masses on the vibrational spectra, thus leaving only electron structure
effects as a reason for SAB = SA + SB at high temperatures. The theoretical
framework of the present analysis, using effective Debye temperatures to
represent certain frequency moments of the phonon spectrum, allows a
straightforward comparison with conventional Debye temperatures referring
to the heat capacity at low and intermediate temperatures.
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